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THE PROBLEM

e Rendering millions of points in real time usually
requires high-end graphics cards or the use of
spatial acceleration structures.

e \We introduce a method to progressively display as
many points as the GPU memory can hold in real
time to get more visually-pleasing results even on
notebooks and low-end GPUs.

METHODS

The basic idea of our method is to reduce the amount of
points that are drawn each frame. This is done in three
passes:

(1) Reproject previous frame.
Render only points that were visible in
the previous frame.

( Reproject

(2) Add random points.
Add a random selection of points to fill
gaps that appear after transformations.

(3) Generate an index buffer from all
currently visible points.

(4) Repeat.

RESULTS

Heidentor, 26M points

GPU bruteforce ours #add converges in
1080 GTX 8.483ms 2.154ms 3M 9 frames / 0.02s
1060 GTX 13.554ms 3.414ms 2M 13 frames / 0.05s
940 MX 37.311ms 11.281ms 1M 26 frames / 0.30s

Retz, 120M points

GPU bruteforce ours #add converges in
1080 GTX 46.289ms 2.892ms 3M 40 frames / 0.12s
1060 GTX 59.736ms 5.642ms 2M 60 frames / 0.34s
940 MX <not enough GPU memory>

Candi Sari, 250M points

GPU bruteforce ours #add converges in
1080 GTX 98.459ms 2.744ms 3M 83 frames /0.23 s
1060 GTX <not enough GPU memory>
940 MX <not enough GPU memory>
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( Candi Sari, 250M points, many of them projected onto the same pixels )
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Our Approach...
« distributes the workload of rendering a single, large blob of points over
multiple frames, without the need to generate acceleration structures in
advance.
* reuses details that were already drawn in previous frames and progress-
es uniformly towards the finished result, typically in less than a second.
*is designed to work while points are being loaded or scanned so that
users can immediately see results.
*uses a single, randomly shuffled array of points as its data structure.
® Shuffling happens incrementally while points are loaded.
* allows users to explore any point cloud that fits into GPU memory in real
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Related Work
® ® ® Futterlieb et al. developed a method that accumulates detail when the
to 3 5x a Ste r W It a c o m I n at I o n camera is still and creates a new vertex buffer from visible points in dis-
crete intervalls, in order to preserve the accumulated details when the
camera moves again [1]. Our method differs in that we create an index
buffer every frame, instead of a vertex buffer in discrete intervalls.
® ® o :
«Similar to our approach, Ponto et al. reprojects every frame to the next,
Of ro res S Ive re n d e r I n a n d a n but they add nodes of a hierarchical structure, instead [2]. As such, it con-
verges faster but in non-uniform way, and it requires a hierarchical struc-
ture.
®
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download the full paper at

bit.ly/2JByVBp
26M points, 3.9x faster 120M points, 16.0x faster 250M points, 35.8x faster

code samples:
https://github.com/m-schuetz/siggraph2018




