Progressive Real-Time
Rendering of Unprocessed
Point Clouds

Presenter: Markus Schuetz

THE PROBLEM

e Rendering millions of points in real time usually
requires high-end graphics cards or the use of
spatial acceleration structures.

e \We introduce a method to progressively display as
many points as the GPU memory can hold in real
time to get more visually-pleasing results even on
notebooks and low-end GPUs.

METHODS

The basic idea of our method is to reduce the amount of
points that are drawn each frame. This is done in three
passes:

(1) Reproject previous frame.
Render only points that were visible in
the previous frame.

(Reproject

(2) Add random points.
Add a random selection of points to fill
gaps that appear after transformations.

(3) Generate an index buffer from all
currently visible points.

(4) Repeat.

RESULTS

Heidentor, 26M points

GPU bruteforce ours #add converges in
1080 GTX 8.483ms 2.154ms 3M 9 frames / 0.02s
1060 GTX 13.554ms 3.414ms 2M 13 frames / 0.05s
940 MX 37.311ms 11.281ms 1M 26 frames / 0.30s

Retz, 120M points

GPU bruteforce ours #add converges in
1080 GTX 46.289ms 2.892ms 3M 40 frames / 0.12s
1060 GTX 59.736ms 5.642ms 2M 60 frames / 0.34s
940 MX <not enough GPU memory>

Candi Sari, 250M points

GPU bruteforce ours #add converges in
1080 GTX 98.459ms 2.744ms 3M 83 frames /0.23 s
1060 GTX <not enough GPU memory>
940 MX <not enough GPU memory>

Fragments per Pixel
B

B s

] 14

] 34

] s2

[198
[] 480
] 1161
2806

‘ ; B 6780
- | N . [>16384

(Candi Sari, 250M points, many of them projected onto the same pixels)

SIGGRAPH .

2020 19-23 JULY WASHINGTON DG

Our Approach...
« distributes the workload of rendering a single, large blob of points over
multiple frames, without the need to generate acceleration structures in
advance.
* reuses details that were already drawn in previous frames and progress-
es uniformly towards the finished result, typically in less than a second.
*is designed to work while points are being loaded or scanned so that
users can immediately see results.
*uses a single, randomly shuffled array of points as its data structure.
® Shuffling happens incrementally while points are loaded.
* allows users to explore any point cloud that fits into GPU memory in real
oiINnt CiIouas Can ne rendere X
Related Work
® ® ® Futterlieb et al. developed a method that accumulates detail when the
to 3 5x a Ste r W It a c o m I n at I o n camera is still and creates a new vertex buffer from visible points in dis-
crete intervalls, in order to preserve the accumulated details when the
camera moves again [1]. Our method differs in that we create an index
buffer every frame, instead of a vertex buffer in discrete intervalls.
® ® o :
«Similar to our approach, Ponto et al. reprojects every frame to the next,
Of ro res S Ive re n d e r I n a n d a n but they add nodes of a hierarchical structure, instead [2]. As such, it con-
verges faster but in non-uniform way, and it requires a hierarchical struc-
ture.
®
References
I n c re m e nta I S h u ffl ed Ve rtex [1] J6rg Futterlieb, Christian Teutsch, and Dirk Berndt. 2016. Smooth
visualization of large point clouds. IADIS International Journal on
Computer Science and Information
d [2] K. Ponto, R. Tredinnick, and G. Casper. 2017. Simulating the
u e r o e Ct experience of home environments. In 2017 International Conference on
O Virtual Rehabilitation (ICVR). 1-9.
https://doi.org/10.1109/ICVR.2017.8007521
Acknowledgements
We would like to thank the following institutions for providing the
respective data sets:
» Heidentor: Ludwig Boltzmann Institute for Archaeological Prospection
and Virtual Archaeology
* Retz courtesy of RIEGL Laser Measurement Systems

» Candi Sari courtesy of TU Wien, Institute of History of Art, Building
Archaeology and Restoration

AVA ()
\ /\ £ : - —Y BAUGESCHICHTE
Ludwig Boltzmann Institute ' ﬁ vLASERMEASUREMENTSYSTEMS BAUFORSCHUNG

Archaeological Prdsi @AY i/ps-tmsu\ogy

Markus Schuetz, Michael Wimmer
TU Wien

http://cg.tuwien.ac.at
mschuetz@cg.tuwien.ac.at
wimmer@cg.tuwien.ac.at

download the full paper at

bit.ly/2JByVBp
26M points, 3.9x faster 120M points, 16.0x faster 250M points, 35.8x faster

code samples:
https://github.com/m-schuetz/siggraph2018

